# LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034 <br> M.Sc., DEGREE EXAMINATION - MATHEMATICS <br> FIRST SEMESTER - NOVERMBER 2011 <br> MT 1810/MT 1804 - LINEAR ALGEBRA 

Date: 01/11/11
Time: 1.00-4.00
Dept. No.
Max. : 100 Marks
I. a. i) Let $A=\left(\begin{array}{ccc}-9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7\end{array}\right)$ be the matrix of a linear operator T defined on $\mathrm{R}^{3}$ with respect to the standard ordered basis. Prove that A is diagonalizable.
(OR)
ii) Prove that the similar matrices have the same characteristic polynomial.
b. (i) Let T be a linear operator on finite dimensional space V and $\mathrm{c}_{1}, \ldots \mathrm{c}_{\mathrm{k}}$ be the distinct characteristic values of T . Let $\mathrm{W}_{\mathrm{i}}$ be the null space of $\left(\mathrm{T}-\mathrm{c}_{\mathrm{i}} \mathrm{I}\right)$. Prove that the following are equivalent.

1. T is diagonalizable
2. The characteristic polynomial for T is $f=\left(x-c_{1}\right)^{d 1} \ldots\left(x-c_{k}\right)^{d_{k}}$ and $\operatorname{dim} W_{i}=d_{i}, i=1, \ldots, k$.
3. $\operatorname{dim} \mathrm{W}_{1}+\ldots \operatorname{dim} \mathrm{W}_{\mathrm{k}}=\operatorname{dim} \mathrm{V}$.
(OR)
(ii) Let T be a linear operator on a finite dimensional vector space V . If f is the characteristic polynomial for $T$, then Show that $f(T)=0$.
(15)
II. a. i) Let T be a linear operator on a finite dimensional space V and let c be a scalar. Prove that the following statements are equivalent.
a) c is a characteristic value of T .
b) The operator $(\mathrm{T}-\mathrm{cI})$ is singular.
c) $\operatorname{det}(\mathrm{T}-\mathrm{cI})=0$.
(OR)
ii) Let V be a finite dimensional vector space. Let $\mathrm{W}_{1}, \ldots, \mathrm{~W}_{\mathrm{k}}$ be independent subspaces such that $\mathrm{W}=\mathrm{W}_{1}+\ldots+\mathrm{W}_{\mathrm{k}}$, then prove that $W_{j} \cap\left(W_{1}+\ldots+W_{j-1}\right)=\{0\}$ for $2 \leq j \leq k$.
b. i) State and prove Primary Decomposition theorem.
(OR)
ii) Let T be linear operator on a finite dimensional space V and $\mathrm{c}_{1}, \ldots \mathrm{c}_{\mathrm{k}}$ be the distinct characteristic values of $T$. Prove that $T$ is diagonalizable if and only if there exist k linear operators $\mathrm{E}_{1}, \ldots \mathrm{E}_{\mathrm{k}}$ on V such that
4. Each $\mathrm{E}_{\mathrm{i}}$ is a projection.
5. $\mathrm{E}_{\mathrm{i}} \mathrm{E}_{\mathrm{j}}=0, \mathrm{i} \neq \mathrm{j}$.
6. $\mathrm{I}=\mathrm{E}_{1}+\ldots+\mathrm{E}_{\mathrm{k}}$.
7. $T=c_{1} E_{1}+\ldots+c_{k} E_{k}$
8. The range of $\mathrm{E}_{\mathrm{i}}$ is the characteristic space of T associated with $\mathrm{c}_{\mathrm{i}}$.
III. a) i) Define T - admissible, T - annihilator, Projection of vector space V and Companion matrix.

> (OR)
ii) Let T be a linear operator on a finite-dimensional vector space V . Let p and f be the minimal and characteristic polynomials for $T$, respectively.
(i) P divides f .
(ii) P and f have the same prime factors, except for multiplicities.
(iii) If $p=f_{1}^{T 1} \ldots . . f_{k}^{T k}$

In the prime factorization of p , then $f=f_{1}^{d 1} \ldots . f_{k}^{d k}$
where $d_{i}$ is the nullity of $f_{i}(T)^{\text {ri }}$ divided by the degree of ${ }_{i}$.
b. i) State and prove Cyclic Decomposition Theorem.
(OR)
(ii) Let P be an mxn matrix with entries in the polynomial algebra $\mathrm{F}[\mathrm{x}]$. Show that following are equivalent.

1. P is invertible
2. The determinant of P is a non-zero scalar polynomial
3. P is row-equivalent to the m xn identity matrix
4. P is a product of elementary matrices.
IV. a. i) Let $V$ be a complex vector space and $f$ be a form on $V$ such that $f(\alpha, \alpha)$ is real for every $\alpha$. Then f is Hermitian.
(OR)
(ii) Define a positive matrix and verify that the matrix $\left(\begin{array}{cc}1 & 1+i \\ 1-i & 3\end{array}\right)$ is positive.
b. i) Let V be a finite-dimensional inner product space and f a form on V . Then there is a unique linear operator T on V such that

$$
\begin{equation*}
\mathrm{f}(\alpha, \beta)=(\mathrm{T} \alpha \mid \beta) \tag{8}
\end{equation*}
$$

for all $\alpha, \beta$ in $V$, and the map $f \rightarrow T$ is an isomorphism of the space of forms onto $L(V, V)$.
(ii) For any linear operator T on a finite-dimensional inner product space V , there exists a unique linear $T^{*}$ on $V$ such that

$$
\begin{equation*}
(\mathrm{T} \alpha \mid \beta)=\left(\alpha \mid \mathrm{T}^{*} \beta\right) \text { for all } \alpha, \beta \text { in } \mathrm{V} . \tag{7}
\end{equation*}
$$

(OR)
iii) Let W be a subspace of an inner product space V and let $\beta$ be a vector in V . Then Prove:

1. The vector $\alpha$ in W is a best approximation to $\beta$ by vectors in W if and only if $\beta-\alpha$ is orthogonal to every vector in W .
2. If a best approximation to $\beta$ by vectors in W exists, it is unique.
3. If W is finite-dimensional and $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is any orthonormal basis for W , then the vector

$$
\begin{equation*}
\alpha=\sum_{k} \frac{\left(\beta \mid \alpha_{k}\right)}{\left\|a_{k}\right\|^{2}} \alpha_{k} \text { is the (unique) best approximation to } \beta \text { by vectors in } \mathrm{W} \text {. } \tag{15}
\end{equation*}
$$

V. a. i) Define: Bilinear forms, Bilinear function, Matrix of $f$ in the ordered basis B, symmetric, Quadratic form, Skew Symmetric Bilinear form, Non - degenerate, Orthogonal matrix, Positive forms.
(OR)
ii) Let F be the field of real numbers or the field of complex numbers. Let A be an n x n matrix over F . Show that The function g defined by $\mathrm{g}(\mathrm{X}, \mathrm{Y})=\mathrm{Y}^{*} \mathrm{AX}$ is a positive form on the space $\mathrm{F}^{\mathrm{nx1}}$ if an only if there exists and invertible $\mathrm{n} \mathrm{X} n$ matrix P with entries in F such that $\mathrm{A}=\mathrm{P} * \mathrm{P}$.
b. i) Let V be an n -dimensional vector space over the field of real numbers, and let f be a symmetric bilinear form on V which has rank r . Then there is and ordered basis $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right\}$ for V in which the matrix of f is diagonal and such that

$$
f\left(\beta_{j,} \beta_{j}\right)= \pm 1, \quad j=1, \ldots, r .
$$

Also show that the number of basis vectors $\beta_{j}$ for which $f\left(\beta_{j}, \beta_{j}\right)=1$ is independent of the choice of basis.

## (OR)

ii) Let V be a finite-dimensional vector space over the field of complex numbers. Let f be a symmetric bilinear form on V which has rank r . Then Prove that there is an ordered basis $\mathrm{B}=\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ for V such that
(i) the matrix of f in the ordered basis B is diagonal;
(ii) $\quad f\left(\beta_{j}, \beta_{j}\right)=\left\{\begin{array}{c}1, j=1, \ldots, r \\ 0, j>r .\end{array}\right.$.
ii) Let V be an inner product space and T a self - adjoint linear operator on V . Then prove that each characteristic value of T is real, and characteristic vectors of T associated with distinct characteristic value are orthogonal.

